Pulse Counter/Interval Timer

discriminate pulse events from a noise background, for pulses of amplitude 10 mV to > 1 Volts;

correctly count ‘events per unit time’, with 0.1, 1.0, or 10second counting intervals;

alternatively, measure the time interval between a pulse and its successor pulse, to 1 µs resolution;

write data files of unlimited length (via HyperTerminal, in a host computer) of successive counts per unit time, or intervals between successive counts.
Introduction
TeachSpin’s ‘TwoSlit Interference, One Photon at a Time’ has become a
classic demonstrationof the ‘essential quantum paradox’ and an experiment
in singlephoton detection. Now, we’ve improved its electronics with a new
Pulse Counter/Interval Timer unit which makes possiblea whole new set of
investigations in the statistics of randomevent processes.
An electronic discriminator, designed to detect even lowlevel analog pulses standing up above a noise background, is built into the counter/timer unit. The discriminator’s threshold level can be adjusted continuously and linearly over a range of about 10 mV to several Volts. A monitor output gives a view of exactly what input pulses are meeting the discriminator’s threshold criterion. Figure 1 shows the discriminator in action.
The data display statistical fluctuations about the mean, of 1086 counts/second and students can process the data files from our new counter to study these fluctuations. Questions they should explore include:

What is the standard deviation of the count rate?

How does that result depend on the (variable) average count rate?

What does the chisquared test have to say about the data in Fig. 2?

What is the histogram of the data in Fig. 2? (See Fig. 3.) Is this distribution Gaussian, and does it have the width expected from Poisson statistics?
Back to the plot in Fig. 2: it shows counts arriving at an average rate of about 10 /s, which means that counts are arriving at average time interval of 10 s or 1 ms.
But, if that time interval between a pulse and its first successor is measured repeatedly, what individual values will result? And what distribution of values will result from repeated series of such measurements? Do you know what histogram those values will have?
Our new Counter/Timer can be configured to measure such a time interval, and to do so repeatedly, and write the results to a file, easily giving a sample of (say) 5000 timeinterval measurements. In such a sample, we found (for example) nearly 1000 occurrences of time intervals in the 1200 µs range. The histogram of all 5000 measured intervals is shown in Fig. 4.
The histogram is not Gaussian, but exponential, in character. The mean interval implied by this distribution is 0.910 ms, to be compared with the value 0.921 ms expected from the average count rate from Fig. 2. But the histogram does not have a peak at that value; in fact, the shortest time intervals are the most probable.
Note too, that the degree to which the distribution matches the expected exponential is a test of the randomevent hypothesis: any correlation between photondetection events, or any periodicity in their arrival, would show up directly in this plot.
There are many other sources of electronic events, some highly (but not perfectly) regular, others nearly (or wholly) random, and all of them susceptible to statistical study. You might think of a notquiteperfect clock, or a Geiger counter, as sources of such events. The prerequisite for such statistical studies is a large sample of data, and we’ve now made that as easy, and straightforward, as possible to obtain. We’ve paid attention to transparency of operation of our new counter/timer, ensuring (for example) that data can be taken by hand for a first mode of understanding of what’s going on. We feel sure that students would do best to take a first (small) data set manually, so that they understand the process of abstraction and aggregation that lies between a list of data and the histogram derived from it.
3
3
Fig. 1: Amplified pulses from the PMT and delayed logic pulses from the Monitor Output, indicating the arrival of photons and signals above threshold. The 'scope was set on persistence mode to display multiple triggered events.
Fig. 2: Scatter plot of number of photon events detected in 1second gate times, plotted as a function of observation number, for 1200 successive observations
Fig. 3: Histogram of the data of Fig. 2, showing also the Gaussian distribution expected from the centrallimit theorem
Fig. 4: Semilog plot of the histogram showing the distribution of 5000 measurements of time
intervals between a photon event and its first successor; horizontal axis in microseconds
Returning to the TwoSlit experiment, we want students to be able to see that the photon events they’re detecting, whether at an interference maximum or a minimum, still display all the statistical properties expected for events that are random and uncorrelated, but nevertheless occurring at a welldefined mean rate. And this invites an even deeper look into the essential quantum mystery.
Finally, we expect that this counter/timer will have uses far beyond the TwoSlit experiment. We invite you to come up with some of them.